

Figure 1. Brown Pearl Hall, West Boxford, Massachusetts, about 1704.

Figure 2. Oak Hill Parlor, early 19th century, Peabody, Massachusetts.

The Deinstallation of a Period Room: What Goes in to Taking One Out

Gordon Hanlon, Furniture and Frame Conservation, Museum of Fine Arts, Boston

Melissa H. Carr, Masterwork Conservation

ABSTRACT

Many American museums installed period rooms in the early twentieth century. Eighty years later, different environmental standards and museum expansions mean that some of those rooms need to be removed and either reinstalled or placed in storage. Over the past four years the Museum of Fine Arts, Boston has deinstalled all of their European and American period rooms as part of a Master Plan to expand and reorganize the museum. The removal of the rooms was coordinated and supported by museum staff and performed by private contractors. The first part of this paper will discuss the background of the project and the particular issues of the museum to prepare for the deinstallation. The second part will provide an overview of the deinstallation of one specific, painted and fully-paneled room to illustrate the process. It will include comments on the planning, logistics, physical removal and documentation, as well as notes on its future reinstallation.

Introduction

The Museum of Fine Arts, Boston is in the process of implementing the first phase of a Master Plan which involves the demolition of the east wing of the museum and the building of a new American wing designed by the London-based architect Sir Norman Foster. This project required that the museum's eighteen period rooms (eleven American and seven European) and two large architectural doorways, on display in the east wing and a connector building, be deinstalled and stored during the construction phase. The majority of the MFA's period rooms were installed and opened in 1928.

The Museum's eighteen period rooms can be divided into three main types. The first are the early post and beam rooms such as the room from the Brown Pearl Hall, West Boxford, Massachusetts from about 1704 (fig. 1) or the linenfold-paneled room from England from about 1500. The second category is partially-paneled with wainscot paneling, and elaborate door, window, cornice and fireplace woodwork, with other areas being plastered. Good examples of this type of room are the three Oak Hill rooms from Peabody, Mass. dating to the early 19th century (fig. 2). The third category of rooms is the fully-paneled, and the Newland House room, which will be discussed in detail later in this paper, is of this type (fig. 3).

Between the fall of 2002 and the spring of 2005 all of the period rooms and architectural doorways were deinstalled by a team of conservators, preservation carpenters and timber frame specialists as well as conservators in the fields of historic wallpaper and fireplace removal.

Work required by museum prior to deinstallation

Collections material

The first stage in this project was the removal of all collections material from the east wing and connector galleries, including the period rooms, and packing and transporting this material to an offsite storage

Figure 3. Newland, 1748, Gloucestershire, England.

facility prior to the demolition and construction phase. The furniture packing systems devised were discussed in the paper "Packing a Collection: Furniture Packing, Transport and Storage at the MFA, Boston in the 2004 *WAG Postprints*.

In addition we also needed to remove some installed objects such as chandeliers and historic wallpaper. Fortunately the wallpaper had been conserved in 1998 by Walter Newman of the Northeast Document Conservation Center in Andover, Massachusetts. Walter returned at the beginning of this project in 2002 and removed the wallpaper from the walls. It was placed between sheets of buffered paper, wrapped in Tyvek and then taped to sheets of Honeycomb display board before being packed for storage.

In some rooms it was necessary to remove curtains, curtain hardware and pelmets, as well as fitted reproduction carpets. Two rooms had engaged oil paintings on stretchers above doorways; in one

it was possible to remove the paintings before the room was deinstalled by working behind the paneled walls, whereas the paintings in the second room were removed after the room deinstallation and carefully protected from dust in the interim with fine grade polyethylene. The stretchers of the paintings were then fitted with mending plates and were inserted into travel collars for safe storage and movement.

Stabilization of elements of rooms

All of the rooms were examined to assess their stability prior to deinstallation. In particular, all of the rooms had glass panes in the windows and each was carefully examined to assess the stability of any cracked panels. If necessary the cracks were stabilized with Paraloid B-72 by the museum's object conservators. One particular room from Somerset in England from about 1500 has extensive stained glass windows and these required a fair amount of stabilization prior to their removal.

Photography

After clearing the room of all collections material, it was possible to take photographs of the wall elevations. This was essential to allow the documentation of each individual element in the period paneling as it was deinstalled and the assignment of an individual number to each part. A copy of the images was also used for condition notes annotated directly onto the images. A copy of the images was used to note any particular construction details which were observed during the deinstallation and which would be of importance during the reinstallation. At the beginning of the project a CD containing TIF digital images of each wall elevation was provided to the deinstallation team.

Architectural Drawings

An architectural firm was commissioned to take precise measurements and produce CAD drawings of each room prior to deinstallation. This involved accurate drawings of the wall elevations and the floor plan and a drawing of the exact layout of floorboards where they were original to the room. Two important details relevant to the reinstallation

were to record diagonal measurements of the rooms and to assess whether the walls were plumb.

In addition the architects returned during the de-installation of the rooms to do measurements of the cut-throughs of the walls in key locations such as at windows and fireplaces, as well as through representative wall sections. The thickness of the paneling and any irregularities in the reverse sides of the panels needed to be recorded as these would be of importance when planning the reinstallation of the rooms. In addition it was decided after the rooms had been deinstalled to document the location of the studwork in several rooms as an aid in planning for the reinstallation of the rooms.

Paint analysis

We decided to do a paint cross-section survey of each painted room so that we would have the information about the paint stratigraphy for the planning stage of the reinstallation. This was done after the rooms were cleared of all collections material and prior to deinstallation. In general, the cross-sections revealed an unsurprising coating

Figure 4. Cross-section revealing gilding beneath white paint in Oak Hill bedroom.

history of multiple paint layers but in one room we were pleased to discover that some of the over-door carving had originally been gilded (fig. 4).

Structural

Prior to any deinstallation work commencing it was very important to review how the walls and ceilings were supported. In most cases the plan was to remove the wall paneling but not the ceilings as none of the plaster ceilings were original. Each ceiling was carefully assessed to see how it was supported. In all cases we discovered that the plaster ceilings, which dated from the 1920–30s, were plaster on a wire lath attached to a metal frame which was suspended from the ceiling. They were therefore self-supporting and did not require the support of the wall studwork. It would thus be possible to remove the paneling and if necessary cut away the supporting studwork without being concerned about the ceiling.

Electrical power

The museum's electricians turned off all power to each period room prior to deinstallation. This included power to illuminate windows, sconces, ceiling lights and all outlets. The electricians then provided power at a remote location from the room which was then used as the power source for general cable-strung overhead work lights, a series of outlet boxes to power work lights, fans, vacuums and a series of power tools and a 3-phase cable required to power the Trion Air Boss air cleaner.

Fire alarms

It was also necessary in some cases to detach and move fire exit lights and fire annunciation horns to allow some deinstallation work to occur. These needed to be kept fully operational throughout the project and could not be turned off.

Asbestos

A particular area of concern and one that may well be encountered especially in older buildings is asbestos. In some cases asbestos was added to plasters and we therefore had a licensed asbestos testing company take samples from all of the plaster walls

and ceilings in the period rooms and test them for asbestos. Fortunately all these tests were negative. However we did find asbestos in some insulation material surrounding some ductwork in one room and this was removed prior to the panel deinstallation by an approved asbestos removal company. The deinstallation team also found two other instances of asbestos during the deinstallation, adjacent to some fluorescent light fixtures in a window bay and in some insulation around a small area of pipe work which was exposed when the paneling was removed. In both these cases work was immediately stopped and the problem was resolved.

Dust control and mitigation

The primary requirement for any dust control system is to protect the deinstallation team from the dust generated. This was particularly important as several of the period rooms had painted surfaces and it is probable that most if not all of these paints contain lead. Therefore each individual would wear the appropriate particulate filter masks whenever particular operations were being undertaken and no food or drink was allowed in the work area. It was recommended that all staff working in the area wash their hands carefully before all meal breaks.

The other consideration was that we wanted to make sure that any dust generated did not spread from the deinstallation zone and contaminate any other parts of the museum. This was especially important for a number of rooms which had plaster walls which were installed in the 1920–30s. Where the plaster abutted and trapped paneling it needed to be cut out to allow the wooden elements to be safely deinstalled.

Several steps were taken to help control dust generated during the deinstallation. To isolate each work area one double plastic film door was made using polyethylene sheeting and duct tape to seal it to the adjoining fabric of the building and wood battens were attached to the plastic at the floor level. Sticky mats were used just outside the double plastic door and each person exiting the

room would walk over these sticky mats to help remove dust and other debris from their shoes. To control the dust generated from the cutting of the plaster and wire lathe each individual cutting tool was attached to a HEPA vacuum, which proved to be very effective. In addition we used a Trion Air Boss air cleaner which was ducted to the outside of the building and had renewable filters. The Air Boss was very effective in eliminating any dust in the air and also produced a slight negative pressure in the room which helped to prevent migration of dust from the room. A major safeguard to preventing migration to other parts of the museum was to seal off HVAC air return ducts to prevent dust from being pulled into the HVAC duct system and being deposited in other galleries. The issue of dust control was very much a joint responsibility of the deinstallation team and the museum.

Smoke detectors

Inevitably any dust generated would quickly activate the smoke detectors in the period rooms and on a previous project we had been advised to cover the smoke detectors during working hours to prevent alarms. However on this project we were advised by our security personnel to leave the smoke detectors uncovered so that they could be monitored throughout the day and that any alarms could then be checked to assess if there was a real fire issue. Due to the increased risk of fire due to cutting operations each room was equipped with a fire extinguisher.

Examination prior to deinstallation

Because of the scale of the project it was necessary to bring in a team of outside conservators and preservation carpenters to deinstall the rooms, working under the supervision of the museum's conservators and collections manager. The first aspect of the project was to gain as much information as possible on how the rooms were installed into their present locations in the museum in the 1920s and 30s so that the deinstallation conservators viewing the project could gain as good an idea as possible of the scope, complexity and possible problems posed by the deinstallations. Unfortu-

nately searches of the museum building records, the museum archives and the curatorial files provided nearly no information on how the period rooms had been installed. Only one room from Woodcote Park, Gloucestershire, England had a series of six black and white photographs in the curatorial files, showing stages in the reinstallation of the room at the MFA in 1927.

It was therefore necessary at the outset to closely examine each room in turn to try and gain as much information as possible on how they had been installed and what measures would be needed to deinstall them. This primarily involved examination of the wooden elements but also involved examination of original brick or marble fireplaces which would also be deinstalled during this project. With regard to the woodwork, the main aim was to try to get behind the walls of the rooms to see the supporting studwork and to see how the paneling had been attached to the studs. A very useful access point was the fireplace which in several cases gave good access to view the supporting studwork. In most cases it was not possible to determine how the paneling was attached from the front (or inside the room) as any metal fixings (nails or screws) were usually very hard to find, either because they have been driven below the surface and filled or the paneling has been repainted after installation.

General guidelines for the deinstallation team **Wooden elements**

Each room is composed of many hundreds of individual wooden pieces ranging from a 20 foot long cornice element composed of many different individual elements to small pieces of molding just a few inches long. The general aim during the deinstallation was to remove the pieces in as large a unit as possible which helps to prevent or minimize any damage caused during the deinstallation and would also greatly simplify the reinstallation of these elements in the new building. However the size of pieces also had to be weighed against the issue of handling, storage and the need to physically be able to remove the elements from the

building. In one case we had a 54-foot beam from the Manning House along with several smaller (20 feet long and 12 inches square) but very heavy pieces, which required the demolition of an exterior wall of the museum to allow for removal from the building.

Door and window hardware

In most cases it was decided to try to keep all door and window hardware attached to their relevant elements. However each room was examined separately and in some cases, such as with the very elaborate window and door hardware on the French Salon room in the Louis XVI Revival style by Allard and Sons from 1903, it was decided to remove the hardware and mount it to boards which were then packed and labeled separately. This decision was made because we all agreed that this was the safest way of protecting the doors, windows and hardware during their packing, handling and storage.

Floors

Of the eighteen period rooms deinstalled, seven had original floorboards. In most cases the floors were removed first but in some cases the paneling needed to come out first because it trapped the floor at the edges. In these cases, the floor was protected during wall removal by covering it with rosin paper followed by sheets of Masonite duct taped at the joins.

Repairs

As is well-illustrated with the Newland House room, there were many old repairs unearthed during the deinstallation. Whenever these were found they were stabilized by regluing any breaks on site so that they would be stable enough to pack safely.

Nails

The wooden panel elements and the floors were secured to the supporting studwork or sub floor with many, many nails. The decision needed to be made as to the best course of action for dealing with the nails. Should they be removed, either by pulling them through the back of the panel or punching them out the face of the panel or would

it be better for the panels to leave them in situ but cut them off flush with the back of the panel? Because of the damage that would have been caused by the removal of so many nails from the wooden wall elements it was decided in most cases to leave them in situ but cut them flush at the back. We hope to minimize the reuse of old nail holes when the rooms are reinstalled because of the potential damage to the face surfaces from their extraction, and also the additional work of filling and inpainting of the filled nail holes which will be required.

The reasoning behind this decision was that we are investigating a range of different systems to reinstall the wooden wall elements that will probably incorporate some type of clip system, (at least for a good majority of rooms) and these systems will secure into the back of the panel and will not require the reuse of the old nail holes. It's likely that for some rooms or some elements of rooms we will require the old nail holes and in these cases the specific nails left in the panels will be extracted during the reinstallation. In the case of the floorboards the nails were removed as we expect to reuse the old nail holes. The nails were extracted by carefully punching the head proud of the surface by tapping on the nail from the back of the board, and then extracting the nail from the front.

Documentation

Because of the scale of this project it was decided to have one person on the deinstallation team whose primary task would be managing all aspects of the documentation of the deinstallation of the room. This documentation specialist was stationed in the staging area adjacent to the room being deinstalled and had a computer and printer, and was able to print out 11 x 17 working copies for the deinstallers to mark up during the deinstallation.

The physical documentation of each element started with it being assigned a number when it was deinstalled. This number was written on blue tape which was applied temporarily to the reverse side of each element. The tape was followed by the "permanent" labeling (a barrier coat of B-72,

a layer of white shellac and the use of a Fine Point Sharpie Permanent Marker) of each deinstalled element with its unique identifying number. All of the rough deinstallation notes and records taken during the deinstallation were “cleaned up,” by entering them on the computer as layers to the digital images of each wall elevation or over the drawing of the floorboard plan. The documentation records therefore included outlined elevations to show each deinstalled element on each wall or floor, as well as a list and description of each element; brief written condition reports and marked up photographs of the condition of the panels prior to deinstallation, notes on the deinstallation and also on any issues regarding how the rooms need to be reinstalled, and a series of images taken during the deinstallation illustrating different aspects of the deinstallation.

All aspects of the documentation worked very well from the deinstallation of the first room, but as everyone on the team gained more experience the level and detail of the documentation definitely got better and the additional notes and details have proven to be very useful as we plan for the reinstallation of the rooms. Specific improvements were the taking of photographs during the deinstallation and the creation of numbered photographic

logs noting the specific numbers of the panels being photographed. Another improvement was changing from Adobe Photoshop to VectorWorks for the computer annotation of photographs.

It was important to review both the working copy and finished draft of all documentation as soon as possible with the deinstallation team making sure that all relevant information was being included. Probably one of the most important aspects of the documentation was the notes taken during the actual deinstallation of how the room was taken apart and what issues and concerns needed to be addressed for its reinstallation. In many cases certain walls of a room and then elements in the room had to be installed in a specific order. For instance, one wall may be trapped by the next wall. All documentation that was generated (written, photographic and CAD drawings) was entered in the museum’s computer database Artemis (fig. 5).

MFA responsibilities during deinstallation

Project meetings

To help make the deinstallation progress as smooth and efficient as possible it proved to be very important to have project meetings first thing each morning to discuss any issues, concerns or needs.

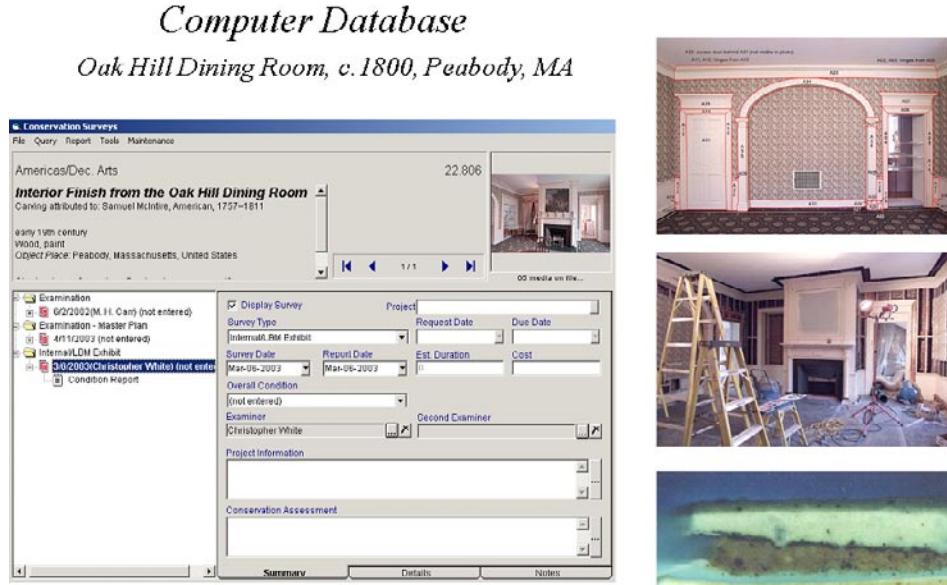


Figure 5. Museum’s computer database, Artemis entries.

Staging area

It was very important to designate a suitable staging area adjacent to the period room being deinstalled. This area was used for numbering, documentation, repairs, removal of nails from floors and storage of dismantled panel elements. Temporary storage of the dismantled pieces of the room is an important issue and we used some A-frame racks to help maximize the storage space, especially of long narrow elements. The larger panels were often leaned against walls and stacked on each other. To prevent abrasion, denser grades of polyethylene foam were used on the floor and foam pipe insulation was used on the top of the panels. The pipe insulation is sold in six-foot lengths and comes in various thicknesses, with different inside and outside diameters and a slit on one side. The foam can be cut to the appropriate length and by pulling the foam apart at the slit can be placed over the top edge of the panel. The advantage of this type of foam is that it stays in place and does not fall down when the panels are moved. All foam for padding and future packing was tested for off-gassing prior to use.

Trash removal

This proved to be a very important requirement primarily due to the need to cut away a large amount of hard plaster and wire lathe which was capturing the wooden elements in many rooms. Several large dumpsters were used and it was very important that the museum made sure that these were removed, emptied and returned to the staging area every day, in some cases twice a day.

Registrar

After the deinstallation and documentation of each piece it was necessary to pack each element to make it stable for transportation. Large elements were braced and partially enclosed in poplar frames, while smaller elements such as moldings were wrapped in foam and packed in groups of similar-sized material from that room. Following this it was crucial to have a registrar to label the frames and crates, and enter the location of each element in the museum's computer database so that we could track the specific location of each

individual piece or group of pieces as they were moved to the offsite storage facility. At this stage it was also important to check for elements from the rooms, especially doors, which had never been installed at the museum and were being stored separately.

Deinstalling the Newland House room

Introduction

The Newland period room at the Museum of Fine Arts, Boston (MFA) started life in 1748 as part of an addition to an English manor house in Gloucestershire. In 1930, almost two centuries later, the walls and floor of the room were removed from the house and reinstalled at the MFA shortly thereafter.

In 2004 Newland was removed again, this time in advance of the demolition of the building in which it was installed. The room will be reinstalled (again) at a later date as part of the MFA's Master Plan.

This section of the paper will discuss the 2004 deinstallation. It will focus on:

- What we needed to know before we started
- The removal and protection of the pieces as they came out
- The documentation of the deinstallation

Before we started

Period rooms as they are installed in museum settings don't necessarily play by the rules of either period building practices or more contemporary building conventions. The logic of how they were installed can be eccentric, and it's useful to examine the room carefully during the planning for a deinstallation.

The tools for this examination were low tech: good eyes, a palette knife, a magnet and a flashlight. Our two goals were to learn as much as possible about:

- the sequence of the installation at the MFA, i.e. the order in which the elements went in
- how and from what direction all of the pieces were attached.

Sequence

In principle, if one element was installed after another then the sequence could be reversed in the deinstallation. For example, in Newland the palette knife slid horizontally under the baseboard and over the floorboard, making it clear that the floor was installed before the baseboards. Thus it was necessary to remove the baseboards first and then the floor before the deinstallation of the walls could begin.

The walls of Newland were frame-and-panel, overlaid with door surrounds, moldings and a multi-part cornice. Each of these component parts had its own sequence of installation that needed to be understood and reversed. By way of illustration, a simple molding might involve one or more mitred joints along its length and a mitred corner. An interior mitred corner is self-locking and can only be disassembled by easing the pieces laterally away from the corner. Creating the space to move sideways means finding the intermediate molding piece that is mitred over the others so that it can be lifted off.

Attachment

In the original 18th-century installation of Newland, the room was attached from the front with nails to the timber frame. In the 1930s installation at the MFA the room was attached in both directions, from the front with nails and screws and from the back with nails and screws through battens between the studs.

On the front faces of the walls, some fasteners were concealed beneath applied moldings. The telescoping magnet was especially useful for finding the fasteners that were counter-sunk, filled and painted over.

Fasteners from the back required physical access to the back of the walls to locate and detach. Behind three of the walls was a crawl-space of approximately eighteen inches—cozy, but adequate for access. The opposite side of the fourth wall had no such space, having been plastered over to form one wall of an adjacent exhibit space. The metal grid, lath and plaster of that gallery wall would

have to be cut away to gain access to the fasteners on the back side. Later, a Metabo grinder with a 4-1/4" masonry blade and vacuum attachment would make relatively dust-free and steady, if not short, work of the wall.

We used the information on sequence and attachment to create a list that itemized every task, put the tasks in order, and estimated a time. This list was the bones of the project proposal for the deinstallation, onto which were added the costs of equipment rental, contingencies for delays, and additional insurance. The first page of this list is shown in Table 1.

Later, the list would also be useful for keeping track of our progress as we went along and communicating with the museum project managers. If one task (e.g. the door surrounds) went more smoothly than expected, we knew that that time was “in the bank” for another task that was more problematic (that an entire wall of plaster had to be cut out in twelve inch squares). At any point in the project we knew where we were relative to where we expected to be, making the schedule and budget as predictable as it could be.

Protecting the room, piece by piece

Taking out a period room can be hard on it. As the parts and pieces of Newland came out, the damage from its early 20th-century removal from the original setting was everywhere. Edges were torn away from angled nails, slender molding profiles were splintered around old nail heads, and backs and edges were dented and split from pry bars. (Putting a period room back in can be hard on it too but that's a topic for another day. We'll restrict ourselves to mentioning the one wall gouged out on the back to fit over the rivets of the steel frame of the building.)

Since the 1930s, standards for the care of period rooms have changed considerably. The Newland parlor is an accessioned object in the MFA's collection and was treated as such over the course of the deinstallation. Great care was taken to avoid dam-

Task	Hours
Preliminary work <ul style="list-style-type: none"> • Proposal preparation <ul style="list-style-type: none"> July meeting (JB) On-site examine, meet w. Gordon (12/2/03) Review notes, preliminary estimate (12/7/03) • Cut wedges (JB) • Gather tools and load 	8 16 40 6 8
Sub-total Preliminary work	78
First day <ul style="list-style-type: none"> • Getting in, move tools to staging area, organize, designate walls A, B, C, D, etc. • Set up dust barriers and arrange for air handler and its necessary equipment, hoses, window ports etc. through Victorian Room out port adjacent to Oak Hill. 	12
Window sash removal (Wall B) <ul style="list-style-type: none"> • Remove shutters, interior stops, sash & weights • Remove stage set materials outside of windows for access to areas behind window wall 	16
Floor Removal <ul style="list-style-type: none"> • Remove base and interfering lower elements • Remove flooring • De-nail flooring, minor conservation and stacking 	104
Plaster removal and clean up in Victorian Room <ul style="list-style-type: none"> • Provide access to behind Newland walls A & D. Time includes setting up air handler and additional dust protection if necessary 	4
Plaster removal of gallery wall adjacent to Newland wall C <ul style="list-style-type: none"> • Remove the entire wall and some ceiling plaster to access Newland cornice from behind. • Ceiling height in room adjacent to Newland wall C is lower than the ceiling in Newland • Staging will be necessary 	16

Table 1. Itemized task list with time estimates.

age to each element as it was separated from the room. As noted, buried fasteners were located with large magnets. Elements were carefully wedged apart and the fasteners cut from behind to eliminate prying damage. The wedges themselves were sandwiched between sheets of polyethylene, Mylar or manila file folders to protect finished surfaces from abrasion. Typically, the nail stubs were cut flush since either pulling them through or banging them out would cause surface damage.

Gravity was a constant problem as we moved up the walls toward the ceiling height of fourteen feet. Each piece had to be supported along its full length as each nail or screw was detached so that the weight of the piece as it came loose wouldn't tear it off the remaining fasteners, damaging both the piece and the personnel. Support took different forms, ranging from another set of hands to padded shelves screwed to the exposed framing, padded slings suspended from above, and blocking built up from the deck of the scaffolding.

This is not to say that every piece had to be separated individually. Where possible, moldings and carvings were left in place and removed together with the panel or rail to which they were attached. Some of the frame-and-panel wall assemblies came out as units, rather than as individual stiles, rails and panels (fig. 6).

Documenting the deinstallation

Before the room was deinstalled, a limited description and condition report was prepared based on visual inspection. Notes on the walls, floor, ceiling, doors and surrounds, windows and hardware were recorded, and elevation photographs of each wall were used to illustrate the notes. Obviously new material (inserted in the 1930s installation) was indicated (fig. 7).

The documentation of the deinstallation itself was an on-going process of photography, labeling, and list-making. Many in-process photographs were taken, showing everything from an original construction detail revealed to an ingenious support system for an awkward piece.

The walls were designated A, B, C, and D and each piece that came off (over 500 in all) was assigned a unique number following the wall designation. The number was recorded on an inventory list, along with a description of the piece, and then the piece was outlined and numbered on the elevation photograph for that wall (fig. 8). Thus, A30 designates an applied carving from wall A, with the inventory further informing the reader that it is from the A44 frieze rail, and that there is a pencil inscription on the back that reads "right of fireplace." The pieces themselves were labeled

initially with blue tape, to be replaced as each day progressed with a B72/white shellac/Sharpie system.

The working inventory lists and elevation photographs were, unsurprisingly, a messy lot, and were later rendered in Adobe Photoshop to a more legible, reproducible format for the final report (fig. 9). Subsequent projects have used Vectorworks software to some advantage.

Notably, the original frame-and-panel joinery of Newland was intact and usable, which isn't always the case with period rooms. A separate set of el-

Figure 6. Frame on wall D being lowered to the floor.

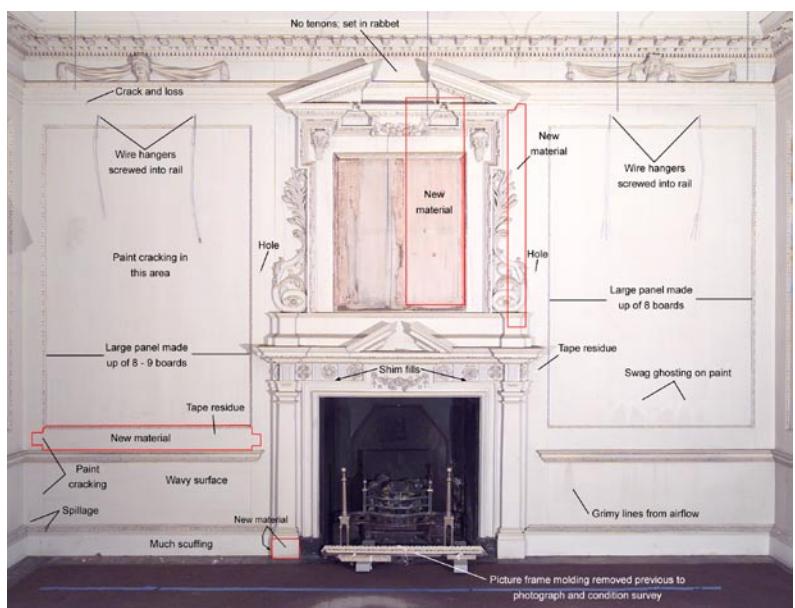


Figure 7. Wall A condition survey image.

elevation photographs illustrated the mortise-and-tenon joinery of the frames. If the frames were left assembled, as was the case with the narrow frame-and-panel units, that joinery was not shown. These photographs provide a visual shortcut to understanding how the walls came apart, and looking ahead, how they will go back together.

The 2004 deinstallation caused some minor damage, usually in areas that had been damaged and repaired previously. Typically, these were unstable cracks and splits that reopened, and occasional scratches and abrasions caused by wedging apart elements for detachment. Treatment of the damage was limited to stabilization for safe packing and storage. Each item was recorded with a description of the problem and the treatment or ad-

visory. Thus on A31 (architrave), two inches of old beading repair popped off; it was resecured with liquid hide glue.

Health and Safety

Removing a period room without damaging it is an admirable, achievable goal. Equally important is to remove it without damaging yourself. Working at heights, whether on scaffolding or crawling up the backs of the walls, requires care, caution and good light. Less obvious are such hazards as asbestos and lead paint. In Newland, asbestos around some light fixtures behind the window bays delayed the removal of the windows until the asbestos could be removed. If the room is painted, as Newland was, there is a distinct possibility that a lead hazard exists for anyone working on or in the

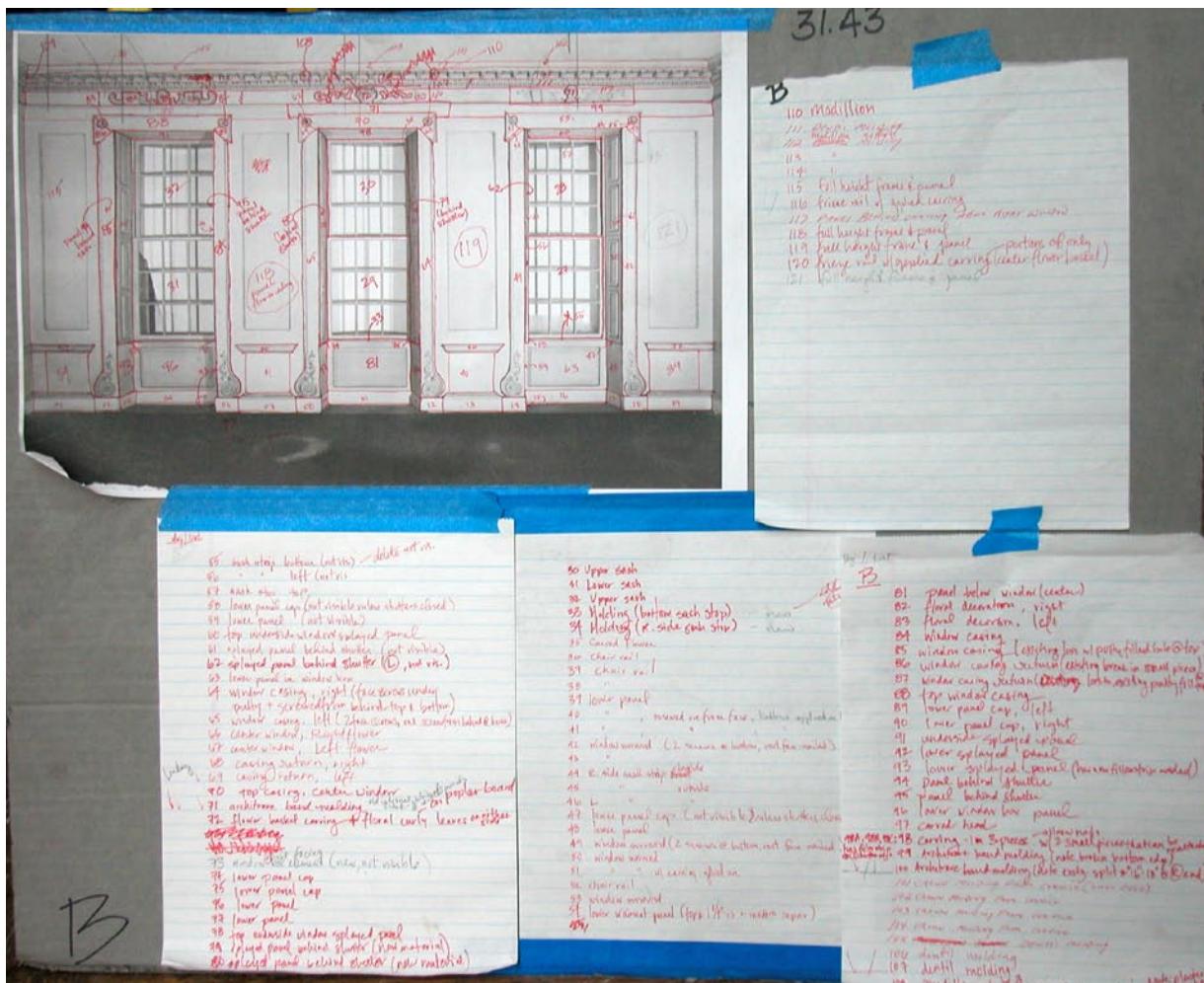


Figure 8. Wall C field images and inventory.

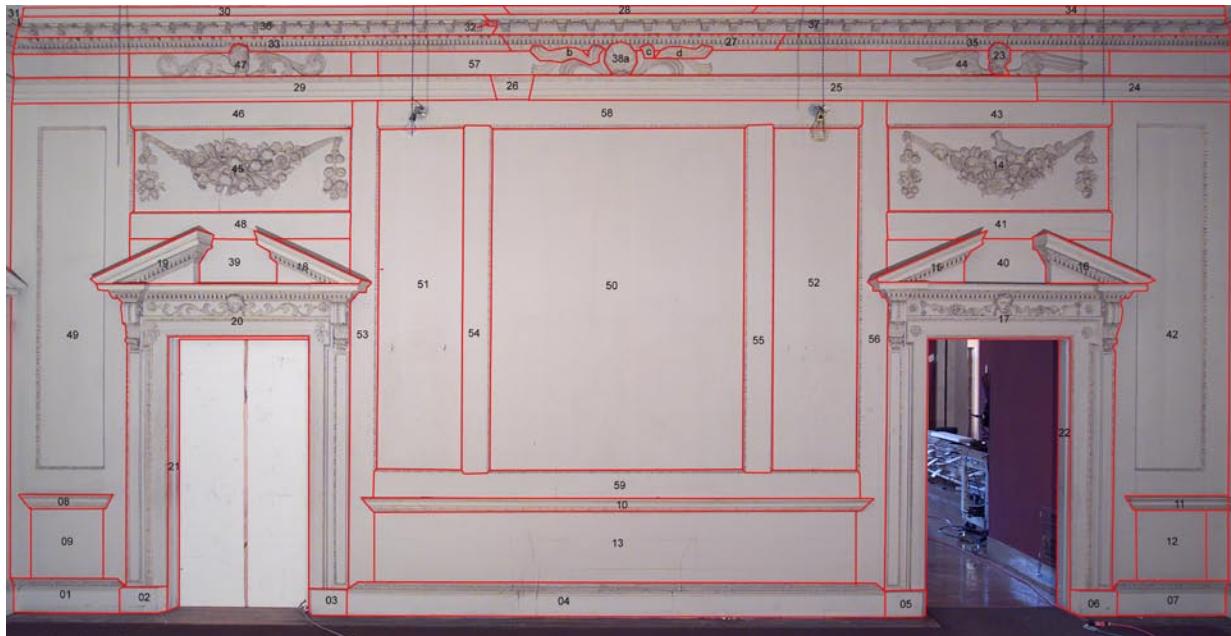


Figure 9. Wall D final catalogue image.

vicinity of the room. Lead white was a common component of paint until late in the 20th-century and as the binder deteriorates the lead can migrate both by skin contact and by inhalation. Whatever the risks, protect accordingly.

Acknowledgments

A particular nod to Erika Sanchez and John Butler, colleagues extraordinaires in the planning, removal and documentation of the Newland period room.

Outside Contractors

Consultant: Jim Boorstein, Traditional Line, NY
 Woodwork deinstallation: John Driggers, Melissa Carr, Thom Gentle, John Butler, Erika Sanchez, Jim Ialeggio, Sean Fisher, K. C. Cederholm, Lisa Gavell.

Wallpaper removal: Walter Newman, Northeast Document Conservation Center

Fireplace Removal: L. H. Freedman Studios, Louise Freedman and Kim Simpson

Architects: Menders, Torrey and Spencer, Lynn Spencer, Patrick Guthrie and Tarica Harris

Timber Frame: Aaron Sturgis and team, Preservation Timber Framing Inc, Eliot, Maine

Packing: US Art Company, Inc.

MFA Staff

Furniture Conservation: Angela Meincke
 Conservation Labs: Textiles, Objects, Paintings, Scientific Research
 Collections Care: Brett Angell, Eric Wolin, Liz Hill, Jim Cain, Matthew Siegal

MFA Photographers: Michael Gould and Damon Beale

Curators: Gerald W. R. Ward and Tracey Albainy

Registrar: Mary Lister

Project Management: Sally O'Hare, Phillip Johns and Christine Lusk.